×

Prerequisites

About installations in restricted networks

In OpenShift Container Platform 4.17, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.

If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.

Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.

Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

  • The ClusterVersion status includes an Unable to retrieve available updates error.

  • By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.

Preparing the user-provisioned infrastructure

Before you install OpenShift Container Platform on user-provisioned infrastructure, you must prepare the underlying infrastructure.

This section provides details about the high-level steps required to set up your cluster infrastructure in preparation for an OpenShift Container Platform installation. This includes configuring IP networking and network connectivity for your cluster nodes, enabling the required ports through your firewall, and setting up the required DNS and load balancing infrastructure.

After preparation, your cluster infrastructure must meet the requirements outlined in the Requirements for a cluster with user-provisioned infrastructure section.

Prerequisites
Procedure
  1. If you are using DHCP to provide the IP networking configuration to your cluster nodes, configure your DHCP service.

    1. Add persistent IP addresses for the nodes to your DHCP server configuration. In your configuration, match the MAC address of the relevant network interface to the intended IP address for each node.

    2. When you use DHCP to configure IP addressing for the cluster machines, the machines also obtain the DNS server information through DHCP. Define the persistent DNS server address that is used by the cluster nodes through your DHCP server configuration.

      If you are not using a DHCP service, you must provide the IP networking configuration and the address of the DNS server to the nodes at RHCOS install time. These can be passed as boot arguments if you are installing from an ISO image. See the Installing RHCOS and starting the OpenShift Container Platform bootstrap process section for more information about static IP provisioning and advanced networking options.

    3. Define the hostnames of your cluster nodes in your DHCP server configuration. See the Setting the cluster node hostnames through DHCP section for details about hostname considerations.

      If you are not using a DHCP service, the cluster nodes obtain their hostname through a reverse DNS lookup.

  2. Choose to perform either a fast track installation of Red Hat Enterprise Linux CoreOS (RHCOS) or a full installation of Red Hat Enterprise Linux CoreOS (RHCOS). For the full installation, you must set up an HTTP or HTTPS server to provide Ignition files and install images to the cluster nodes. For the fast track installation an HTTP or HTTPS server is not required, however, a DHCP server is required. See sections “Fast-track installation: Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines" and “Full installation: Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines".

  3. Ensure that your network infrastructure provides the required network connectivity between the cluster components. See the Networking requirements for user-provisioned infrastructure section for details about the requirements.

  4. Configure your firewall to enable the ports required for the OpenShift Container Platform cluster components to communicate. See Networking requirements for user-provisioned infrastructure section for details about the ports that are required.

    By default, port 1936 is accessible for an OpenShift Container Platform cluster, because each control plane node needs access to this port.

    Avoid using the Ingress load balancer to expose this port, because doing so might result in the exposure of sensitive information, such as statistics and metrics, related to Ingress Controllers.

  5. Setup the required DNS infrastructure for your cluster.

    1. Configure DNS name resolution for the Kubernetes API, the application wildcard, the bootstrap machine, the control plane machines, and the compute machines.

    2. Configure reverse DNS resolution for the Kubernetes API, the bootstrap machine, the control plane machines, and the compute machines.

      See the User-provisioned DNS requirements section for more information about the OpenShift Container Platform DNS requirements.

  6. Validate your DNS configuration.

    1. From your installation node, run DNS lookups against the record names of the Kubernetes API, the wildcard routes, and the cluster nodes. Validate that the IP addresses in the responses correspond to the correct components.

    2. From your installation node, run reverse DNS lookups against the IP addresses of the load balancer and the cluster nodes. Validate that the record names in the responses correspond to the correct components.

      See the Validating DNS resolution for user-provisioned infrastructure section for detailed DNS validation steps.

  7. Provision the required API and application ingress load balancing infrastructure. See the Load balancing requirements for user-provisioned infrastructure section for more information about the requirements.

Some load balancing solutions require the DNS name resolution for the cluster nodes to be in place before the load balancing is initialized.

Manually creating the installation configuration file

Installing the cluster requires that you manually create the installation configuration file.

Prerequisites
  • You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.

  • You have obtained the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure
  1. Create an installation directory to store your required installation assets in:

    $ mkdir <installation_directory>

    You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

  2. Customize the sample install-config.yaml file template that is provided and save it in the <installation_directory>.

    You must name this configuration file install-config.yaml.

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.

Sample install-config.yaml file for IBM Z

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

apiVersion: v1
baseDomain: example.com (1)
compute: (2)
- hyperthreading: Enabled (3)
  name: worker
  replicas: 0 (4)
  architecture: s390x
controlPlane: (2)
  hyperthreading: Enabled (3)
  name: master
  replicas: 3 (5)
  architecture: s390x
metadata:
  name: test (6)
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14 (7)
    hostPrefix: 23 (8)
  networkType: OVNKubernetes (9)
  serviceNetwork: (10)
  - 172.30.0.0/16
platform:
  none: {} (11)
fips: false (12)
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' (13)
sshKey: 'ssh-ed25519 AAAA...' (14)
additionalTrustBundle: | (15)
  -----BEGIN CERTIFICATE-----
  ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
  -----END CERTIFICATE-----
imageContentSources: (16)
- mirrors:
  - <local_repository>/ocp4/openshift4
  source: quay.io/openshift-release-dev/ocp-release
- mirrors:
  - <local_repository>/ocp4/openshift4
  source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
1 The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
2 The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
3 Specifies whether to enable or disable simultaneous multithreading (SMT), or hyperthreading. By default, SMT is enabled to increase the performance of the cores in your machines. You can disable it by setting the parameter value to Disabled. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.

Simultaneous multithreading (SMT) is enabled by default. If SMT is not available on your OpenShift Container Platform nodes, the hyperthreading parameter has no effect.

If you disable hyperthreading, whether on your OpenShift Container Platform nodes or in the install-config.yaml file, ensure that your capacity planning accounts for the dramatically decreased machine performance.

4 You must set this value to 0 when you install OpenShift Container Platform on user-provisioned infrastructure. In installer-provisioned installations, the parameter controls the number of compute machines that the cluster creates and manages for you. In user-provisioned installations, you must manually deploy the compute machines before you finish installing the cluster.

If you are installing a three-node cluster, do not deploy any compute machines when you install the Red Hat Enterprise Linux CoreOS (RHCOS) machines.

5 The number of control plane machines that you add to the cluster. Because the cluster uses these values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
6 The cluster name that you specified in your DNS records.
7 A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.

Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.

8 The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23, then each node is assigned a /23 subnet out of the given cidr, which allows for 510 (2^(32 - 23) - 2) pod IP addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic.
9 The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
10 The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
11 You must set the platform to none. You cannot provide additional platform configuration variables for IBM Z® infrastructure.

Clusters that are installed with the platform type none are unable to use some features, such as managing compute machines with the Machine API. This limitation applies even if the compute machines that are attached to the cluster are installed on a platform that would normally support the feature. This parameter cannot be changed after installation.

12 Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Switching RHEL to FIPS mode.

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

13 For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
14 The SSH public key for the core user in Red Hat Enterprise Linux CoreOS (RHCOS).

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

15 Add the additionalTrustBundle parameter and value. The value must be the contents of the certificate file that you used for your mirror registry. The certificate file can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.
16 Provide the imageContentSources section according to the output of the command that you used to mirror the repository.
  • When using the oc adm release mirror command, use the output from the imageContentSources section.

  • When using oc mirror command, use the repositoryDigestMirrors section of the ImageContentSourcePolicy file that results from running the command.

  • ImageContentSourcePolicy is deprecated. For more information see Configuring image registry repository mirroring.

Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites
  • You have an existing install-config.yaml file.

  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure
  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
      httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
      noProxy: example.com (3)
    additionalTrustBundle: | (4)
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
    1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2 A proxy URL to use for creating HTTPS connections outside the cluster.
    3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4 If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5 Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

    The installation program does not support the proxy readinessEndpoints field.

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Configuring a three-node cluster

Optionally, you can deploy zero compute machines in a minimal three node cluster that consists of three control plane machines only. This provides smaller, more resource efficient clusters for cluster administrators and developers to use for testing, development, and production.

In three-node OpenShift Container Platform environments, the three control plane machines are schedulable, which means that your application workloads are scheduled to run on them.

Prerequisites
  • You have an existing install-config.yaml file.

Procedure
  • Ensure that the number of compute replicas is set to 0 in your install-config.yaml file, as shown in the following compute stanza:

    compute:
    - name: worker
      platform: {}
      replicas: 0

    You must set the value of the replicas parameter for the compute machines to 0 when you install OpenShift Container Platform on user-provisioned infrastructure, regardless of the number of compute machines you are deploying. In installer-provisioned installations, the parameter controls the number of compute machines that the cluster creates and manages for you. This does not apply to user-provisioned installations, where the compute machines are deployed manually.

    The preferred resource for control plane nodes is six vCPUs and 21 GB. For three control plane nodes this is the memory + vCPU equivalent of a minimum five-node cluster. You should back the three nodes, each installed on a 120 GB disk, with three IFLs that are SMT2 enabled. The minimum tested setup is three vCPUs and 10 GB on a 120 GB disk for each control plane node.

For three-node cluster installations, follow these next steps:

  • If you are deploying a three-node cluster with zero compute nodes, the Ingress Controller pods run on the control plane nodes. In three-node cluster deployments, you must configure your application ingress load balancer to route HTTP and HTTPS traffic to the control plane nodes. See the Load balancing requirements for user-provisioned infrastructure section for more information.

  • When you create the Kubernetes manifest files in the following procedure, ensure that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml file is set to true. This enables your application workloads to run on the control plane nodes.

  • Do not deploy any compute nodes when you create the Red Hat Enterprise Linux CoreOS (RHCOS) machines.

Cluster Network Operator configuration

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.

Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 1. Cluster Network Operator configuration object
Field Type Description

metadata.name

string

The name of the CNO object. This name is always cluster.

spec.clusterNetwork

array

A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:

spec:
  clusterNetwork:
  - cidr: 10.128.0.0/19
    hostPrefix: 23
  - cidr: 10.128.32.0/19
    hostPrefix: 23

spec.serviceNetwork

array

A block of IP addresses for services. The OVN-Kubernetes network plugin supports only a single IP address block for the service network. For example:

spec:
  serviceNetwork:
  - 172.30.0.0/14

You can customize this field only in the install-config.yaml file before you create the manifests. The value is read-only in the manifest file.

spec.defaultNetwork

object

Configures the network plugin for the cluster network.

spec.kubeProxyConfig

object

The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network plugin, the kube-proxy configuration has no effect.

For a cluster that needs to deploy objects across multiple networks, ensure that you specify the same value for the clusterNetwork.hostPrefix parameter for each network type that is defined in the install-config.yaml file. Setting a different value for each clusterNetwork.hostPrefix parameter can impact the OVN-Kubernetes network plugin, where the plugin cannot effectively route object traffic among different nodes.

defaultNetwork object configuration

The values for the defaultNetwork object are defined in the following table:

Table 2. defaultNetwork object
Field Type Description

type

string

OVNKubernetes. The Red Hat OpenShift Networking network plugin is selected during installation. This value cannot be changed after cluster installation.

OpenShift Container Platform uses the OVN-Kubernetes network plugin by default. OpenShift SDN is no longer available as an installation choice for new clusters.

ovnKubernetesConfig

object

This object is only valid for the OVN-Kubernetes network plugin.

Configuration for the OVN-Kubernetes network plugin

The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 3. ovnKubernetesConfig object
Field Type Description

mtu

integer

The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.

If the auto-detected value is not what you expect it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.

If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.

genevePort

integer

The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.

ipsecConfig

object

Specify a configuration object for customizing the IPsec configuration.

ipv4

object

Specifies a configuration object for IPv4 settings.

ipv6

object

Specifies a configuration object for IPv6 settings.

policyAuditConfig

object

Specify a configuration object for customizing network policy audit logging. If unset, the defaults audit log settings are used.

gatewayConfig

object

Optional: Specify a configuration object for customizing how egress traffic is sent to the node gateway.

While migrating egress traffic, you can expect some disruption to workloads and service traffic until the Cluster Network Operator (CNO) successfully rolls out the changes.

Table 4. ovnKubernetesConfig.ipv4 object
Field Type Description

internalTransitSwitchSubnet

string

If your existing network infrastructure overlaps with the 100.88.0.0/16 IPv4 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. The subnet for the distributed transit switch that enables east-west traffic. This subnet cannot overlap with any other subnets used by OVN-Kubernetes or on the host itself. It must be large enough to accommodate one IP address per node in your cluster.

The default value is 100.88.0.0/16.

internalJoinSubnet

string

If your existing network infrastructure overlaps with the 100.64.0.0/16 IPv4 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. You must ensure that the IP address range does not overlap with any other subnet used by your OpenShift Container Platform installation. The IP address range must be larger than the maximum number of nodes that can be added to the cluster. For example, if the clusterNetwork.cidr value is 10.128.0.0/14 and the clusterNetwork.hostPrefix value is /23, then the maximum number of nodes is 2^(23-14)=512.

The default value is 100.64.0.0/16.

Table 5. ovnKubernetesConfig.ipv6 object
Field Type Description

internalTransitSwitchSubnet

string

If your existing network infrastructure overlaps with the fd97::/64 IPv6 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. The subnet for the distributed transit switch that enables east-west traffic. This subnet cannot overlap with any other subnets used by OVN-Kubernetes or on the host itself. It must be large enough to accommodate one IP address per node in your cluster.

The default value is fd97::/64.

internalJoinSubnet

string

If your existing network infrastructure overlaps with the fd98::/64 IPv6 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. You must ensure that the IP address range does not overlap with any other subnet used by your OpenShift Container Platform installation. The IP address range must be larger than the maximum number of nodes that can be added to the cluster.

The default value is fd98::/64.

Table 6. policyAuditConfig object
Field Type Description

rateLimit

integer

The maximum number of messages to generate every second per node. The default value is 20 messages per second.

maxFileSize

integer

The maximum size for the audit log in bytes. The default value is 50000000 or 50 MB.

maxLogFiles

integer

The maximum number of log files that are retained.

destination

string

One of the following additional audit log targets:

libc

The libc syslog() function of the journald process on the host.

udp:<host>:<port>

A syslog server. Replace <host>:<port> with the host and port of the syslog server.

unix:<file>

A Unix Domain Socket file specified by <file>.

null

Do not send the audit logs to any additional target.

syslogFacility

string

The syslog facility, such as kern, as defined by RFC5424. The default value is local0.

Table 7. gatewayConfig object
Field Type Description

routingViaHost

boolean

Set this field to true to send egress traffic from pods to the host networking stack. For highly-specialized installations and applications that rely on manually configured routes in the kernel routing table, you might want to route egress traffic to the host networking stack. By default, egress traffic is processed in OVN to exit the cluster and is not affected by specialized routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware offloading feature. If you set this field to true, you do not receive the performance benefits of the offloading because egress traffic is processed by the host networking stack.

ipForwarding

object

You can control IP forwarding for all traffic on OVN-Kubernetes managed interfaces by using the ipForwarding specification in the Network resource. Specify Restricted to only allow IP forwarding for Kubernetes related traffic. Specify Global to allow forwarding of all IP traffic. For new installations, the default is Restricted. For updates to OpenShift Container Platform 4.14 or later, the default is Global.

ipv4

object

Optional: Specify an object to configure the internal OVN-Kubernetes masquerade address for host to service traffic for IPv4 addresses.

ipv6

object

Optional: Specify an object to configure the internal OVN-Kubernetes masquerade address for host to service traffic for IPv6 addresses.

Table 8. gatewayConfig.ipv4 object
Field Type Description

internalMasqueradeSubnet

string

The masquerade IPv4 addresses that are used internally to enable host to service traffic. The host is configured with these IP addresses as well as the shared gateway bridge interface. The default value is 169.254.169.0/29.

For OpenShift Container Platform 4.17 and later versions, clusters use 169.254.0.0/17 as the default masquerade subnet. For upgraded clusters, there is no change to the default masquerade subnet.

Table 9. gatewayConfig.ipv6 object
Field Type Description

internalMasqueradeSubnet

string

The masquerade IPv6 addresses that are used internally to enable host to service traffic. The host is configured with these IP addresses as well as the shared gateway bridge interface. The default value is fd69::/125.

For OpenShift Container Platform 4.17 and later versions, clusters use fd69::/112 as the default masquerade subnet. For upgraded clusters, there is no change to the default masquerade subnet.

Table 10. ipsecConfig object
Field Type Description

mode

string

Specifies the behavior of the IPsec implementation. Must be one of the following values:

  • Disabled: IPsec is not enabled on cluster nodes.

  • External: IPsec is enabled for network traffic with external hosts.

  • Full: IPsec is enabled for pod traffic and network traffic with external hosts.

Example OVN-Kubernetes configuration with IPSec enabled
defaultNetwork:
  type: OVNKubernetes
  ovnKubernetesConfig:
    mtu: 1400
    genevePort: 6081
      ipsecConfig:
        mode: Full

Creating the Kubernetes manifest and Ignition config files

Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.

  • The Ignition config files that the OpenShift Container Platform installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

The installation program that generates the manifest and Ignition files is architecture specific and can be obtained from the client image mirror. The Linux version of the installation program runs on s390x only. This installer program is also available as a Mac OS version.

Prerequisites
  • You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.

  • You created the install-config.yaml installation configuration file.

Procedure
  1. Change to the directory that contains the OpenShift Container Platform installation program and generate the Kubernetes manifests for the cluster:

    $ ./openshift-install create manifests --dir <installation_directory> (1)
    1 For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.

    If you are installing a three-node cluster, skip the following step to allow the control plane nodes to be schedulable.

    When you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become compute nodes.

  2. Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:

    1. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.

    2. Locate the mastersSchedulable parameter and ensure that it is set to false.

    3. Save and exit the file.

  3. To create the Ignition configuration files, run the following command from the directory that contains the installation program:

    $ ./openshift-install create ignition-configs --dir <installation_directory> (1)
    1 For <installation_directory>, specify the same installation directory.

    Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The kubeadmin-password and kubeconfig files are created in the ./<installation_directory>/auth directory:

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign

Installing RHCOS and starting the OpenShift Container Platform bootstrap process

To install OpenShift Container Platform on IBM Z® infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) as Red Hat Enterprise Linux (RHEL) guest virtual machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.

You can perform a fast-track installation of RHCOS that uses a prepackaged QEMU copy-on-write (QCOW2) disk image. Alternatively, you can perform a full installation on a new QCOW2 disk image.

To add further security to your system, you can optionally install RHCOS using IBM® Secure Execution before proceeding to the fast-track installation.

Installing RHCOS using IBM Secure Execution

Before you install RHCOS using IBM® Secure Execution, you must prepare the underlying infrastructure.

Prerequisites
  • IBM® z15 or later, or IBM® LinuxONE III or later.

  • Red Hat Enterprise Linux (RHEL) 8 or later.

  • You have a bootstrap Ignition file. The file is not protected, enabling others to view and edit it.

  • You have verified that the boot image has not been altered after installation.

  • You must run all your nodes as IBM® Secure Execution guests.

Procedure
  1. Prepare your RHEL KVM host to support IBM® Secure Execution.

    • By default, KVM hosts do not support guests in IBM® Secure Execution mode. To support guests in IBM® Secure Execution mode, KVM hosts must boot in LPAR mode with the kernel parameter specification prot_virt=1. To enable prot_virt=1 on RHEL 8, follow these steps:

      1. Navigate to /boot/loader/entries/ to modify your bootloader configuration file *.conf.

      2. Add the kernel command line parameter prot_virt=1.

      3. Run the zipl command and reboot your system.

        KVM hosts that successfully start with support for IBM® Secure Execution for Linux issue the following kernel message:

        prot_virt: Reserving <amount>MB as ultravisor base storage.
      4. To verify that the KVM host now supports IBM® Secure Execution, run the following command:

        # cat /sys/firmware/uv/prot_virt_host
        Example output
        1

        The value of this attribute is 1 for Linux instances that detect their environment as consistent with that of a secure host. For other instances, the value is 0.

  2. Add your host keys to the KVM guest via Ignition.

    During the first boot, RHCOS looks for your host keys to re-encrypt itself with them. RHCOS searches for files starting with ibm-z-hostkey- in the /etc/se-hostkeys directory. All host keys, for each machine the cluster is running on, must be loaded into the directory by the administrator. After first boot, you cannot run the VM on any other machines.

    You need to prepare your Ignition file on a safe system. For example, another IBM® Secure Execution guest.

    For example:

    {
      "ignition": { "version": "3.0.0" },
      "storage": {
        "files": [
          {
            "path": "/etc/se-hostkeys/ibm-z-hostkey-<your-hostkey>.crt",
            "contents": {
              "source": "data:;base64,<base64 encoded hostkey document>"
            },
            "mode": 420
          },
          {
            "path": "/etc/se-hostkeys/ibm-z-hostkey-<your-hostkey>.crt",
            "contents": {
              "source": "data:;base64,<base64 encoded hostkey document>"
            },
            "mode": 420
          }
        ]
      }
    }
    ```

    You can add as many host keys as required if you want your node to be able to run on multiple IBM Z® machines.

  3. To generate the Base64 encoded string, run the following command:

    base64 <your-hostkey>.crt

    Compared to guests not running IBM® Secure Execution, the first boot of the machine is longer because the entire image is encrypted with a randomly generated LUKS passphrase before the Ignition phase.

  4. Add Ignition protection

    To protect the secrets that are stored in the Ignition config file from being read or even modified, you must encrypt the Ignition config file.

    To achieve the desired security, Ignition logging and local login are disabled by default when running IBM® Secure Execution.

    1. Fetch the public GPG key for the secex-qemu.qcow2 image and encrypt the Ignition config with the key by running the following command:

      gpg --recipient-file /path/to/ignition.gpg.pub --yes --output /path/to/config.ign.gpg --verbose --armor --encrypt /path/to/config.ign
  5. Follow the fast-track installation of RHCOS to install nodes by using the IBM® Secure Execution QCOW image.

    Before you start the VM, replace serial=ignition with serial=ignition_crypted, and add the launchSecurity parameter.

Verification

When you have completed the fast-track installation of RHCOS and Ignition runs at the first boot, verify if decryption is successful.

  • If the decryption is successful, you can expect an output similar to the following example:

    Example output
    [    2.801433] systemd[1]: Starting coreos-ignition-setup-user.service - CoreOS Ignition User Config Setup...
    
    [    2.803959] coreos-secex-ignition-decrypt[731]: gpg: key <key_name>: public key "Secure Execution (secex) 38.20230323.dev.0" imported
    [    2.808874] coreos-secex-ignition-decrypt[740]: gpg: encrypted with rsa4096 key, ID <key_name>, created <yyyy-mm-dd>
    [  OK  ] Finished coreos-secex-igni…S Secex Ignition Config Decryptor.
  • If the decryption fails, you can expect an output similar to the following example:

    Example output
    Starting coreos-ignition-s…reOS Ignition User Config Setup...
    [    2.863675] coreos-secex-ignition-decrypt[729]: gpg: key <key_name>: public key "Secure Execution (secex) 38.20230323.dev.0" imported
    [    2.869178] coreos-secex-ignition-decrypt[738]: gpg: encrypted with RSA key, ID <key_name>
    [    2.870347] coreos-secex-ignition-decrypt[738]: gpg: public key decryption failed: No secret key
    [    2.870371] coreos-secex-ignition-decrypt[738]: gpg: decryption failed: No secret key

Configuring NBDE with static IP in an IBM Z or IBM LinuxONE environment

Enabling NBDE disk encryption in an IBM Z® or IBM® LinuxONE environment requires additional steps, which are described in detail in this section.

Prerequisites
  • You have set up the External Tang Server. See Network-bound disk encryption for instructions.

  • You have installed the butane utility.

  • You have reviewed the instructions for how to create machine configs with Butane.

Procedure
  1. Create Butane configuration files for the control plane and compute nodes.

    The following example of a Butane configuration for a control plane node creates a file named master-storage.bu for disk encryption:

    variant: openshift
    version: 4.17.0
    metadata:
      name: master-storage
      labels:
        machineconfiguration.openshift.io/role: master
    storage:
      luks:
        - clevis:
            tang:
              - thumbprint: QcPr_NHFJammnRCA3fFMVdNBwjs
                url: http://clevis.example.com:7500
            options: (1)
               - --cipher
               - aes-cbc-essiv:sha256
          device: /dev/disk/by-partlabel/root
          label: luks-root
          name: root
          wipe_volume: true
      filesystems:
        - device: /dev/mapper/root
          format: xfs
          label: root
          wipe_filesystem: true
    openshift:
      fips: true (2)
    1 The cipher option is only required if FIPS mode is enabled. Omit the entry if FIPS is disabled.
    2 Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
  2. Create a customized initramfs file to boot the machine, by running the following command:

    $ coreos-installer pxe customize \
        /root/rhcos-bootfiles/rhcos-<release>-live-initramfs.s390x.img \
        --dest-device /dev/disk/by-id/scsi-<serial_number> --dest-karg-append \
        ip=<ip_address>::<gateway_ip>:<subnet_mask>::<network_device>:none \
        --dest-karg-append nameserver=<nameserver_ip> \
        --dest-karg-append rd.neednet=1 -o \
        /root/rhcos-bootfiles/<node_name>-initramfs.s390x.img

    Before first boot, you must customize the initramfs for each node in the cluster, and add PXE kernel parameters.

  3. Create a parameter file that includes ignition.platform.id=metal and ignition.firstboot.

    Example kernel parameter file for the control plane machine
    cio_ignore=all,!condev rd.neednet=1 \
    console=ttysclp0 \
    ignition.firstboot ignition.platform.id=metal \
    coreos.inst.ignition_url=http://<http_server>/master.ign \(1)
    coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.<architecture>.img \(2)
    ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns> \
    rd.znet=qeth,0.0.bdd0,0.0.bdd1,0.0.bdd2,layer2=1 \
    rd.zfcp=0.0.5677,0x600606680g7f0056,0x034F000000000000 \
    zfcp.allow_lun_scan=0
    1 Specify the location of the Ignition config file. Use master.ign or worker.ign. Only HTTP and HTTPS protocols are supported.
    2 Specify the location of the rootfs artifact for the kernel and initramfs you are booting. Only HTTP and HTTPS protocols are supported.

    Write all options in the parameter file as a single line and make sure you have no newline characters.

Fast-track installation by using a prepackaged QCOW2 disk image

Complete the following steps to create the machines in a fast-track installation of Red Hat Enterprise Linux CoreOS (RHCOS), importing a prepackaged Red Hat Enterprise Linux CoreOS (RHCOS) QEMU copy-on-write (QCOW2) disk image.

Prerequisites
  • At least one LPAR running on RHEL 8.6 or later with KVM, referred to as RHEL KVM host in this procedure.

  • The KVM/QEMU hypervisor is installed on the RHEL KVM host.

  • A domain name server (DNS) that can perform hostname and reverse lookup for the nodes.

  • A DHCP server that provides IP addresses.

Procedure
  1. Obtain the RHEL QEMU copy-on-write (QCOW2) disk image file from the Product Downloads page on the Red Hat Customer Portal or from the RHCOS image mirror page.

    The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate RHCOS QCOW2 image described in the following procedure.

  2. Download the QCOW2 disk image and Ignition files to a common directory on the RHEL KVM host.

    For example: /var/lib/libvirt/images

    The Ignition files are generated by the OpenShift Container Platform installer.

  3. Create a new disk image with the QCOW2 disk image backing file for each KVM guest node.

    $ qemu-img create -f qcow2 -F qcow2 -b /var/lib/libvirt/images/{source_rhcos_qemu} /var/lib/libvirt/images/{vmname}.qcow2 {size}
  4. Create the new KVM guest nodes using the Ignition file and the new disk image.

    $ virt-install --noautoconsole \
       --connect qemu:///system \
       --name <vm_name> \
       --memory <memory_mb> \
       --vcpus <vcpus> \
       --disk <disk> \
       --launchSecurity type="s390-pv" \ (1)
       --import \
       --network network=<virt_network_parm>,mac=<mac_address> \
       --disk path=<ign_file>,format=raw,readonly=on,serial=ignition,startup_policy=optional (2)
    1 If IBM® Secure Execution is enabled, add the launchSecurity type="s390-pv" parameter.
    2 If IBM® Secure Execution is enabled, replace serial=ignition with serial=ignition_crypted.

Full installation on a new QCOW2 disk image

Complete the following steps to create the machines in a full installation on a new QEMU copy-on-write (QCOW2) disk image.

Prerequisites
  • At least one LPAR running on RHEL 8.6 or later with KVM, referred to as RHEL KVM host in this procedure.

  • The KVM/QEMU hypervisor is installed on the RHEL KVM host.

  • A domain name server (DNS) that can perform hostname and reverse lookup for the nodes.

  • An HTTP or HTTPS server is set up.

Procedure
  1. Obtain the RHEL kernel, initramfs, and rootfs files from the Product Downloads page on the Red Hat Customer Portal or from the RHCOS image mirror page.

    The RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate RHCOS QCOW2 image described in the following procedure.

    The file names contain the OpenShift Container Platform version number. They resemble the following examples:

    • kernel: rhcos-<version>-live-kernel-<architecture>

    • initramfs: rhcos-<version>-live-initramfs.<architecture>.img

    • rootfs: rhcos-<version>-live-rootfs.<architecture>.img

  2. Move the downloaded RHEL live kernel, initramfs, and rootfs as well as the Ignition files to an HTTP or HTTPS server before you launch virt-install.

    The Ignition files are generated by the OpenShift Container Platform installer.

  3. Create the new KVM guest nodes using the RHEL kernel, initramfs, and Ignition files, the new disk image, and adjusted parm line arguments.

    $ virt-install \
       --connect qemu:///system \
       --name <vm_name> \
       --memory <memory_mb> \
       --vcpus <vcpus> \
       --location <media_location>,kernel=<rhcos_kernel>,initrd=<rhcos_initrd> \ / (1)
       --disk <vm_name>.qcow2,size=<image_size>,cache=none,io=native \
       --network network=<virt_network_parm> \
       --boot hd \
       --extra-args "rd.neednet=1" \
       --extra-args "coreos.inst.install_dev=/dev/<block_device>" \
       --extra-args "coreos.inst.ignition_url=http://<http_server>/bootstrap.ign" \(2)
       --extra-args "coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.<architecture>.img" \(3)
       --extra-args "ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns>" \
       --noautoconsole \
       --wait
    1 For the --location parameter, specify the location of the kernel/initrd on the HTTP or HTTPS server.
    2 Specify the location of the Ignition config file. Use bootstrap.ign, master.ign, or worker.ign. Only HTTP and HTTPS protocols are supported.
    3 Specify the location of the rootfs artifact for the kernel and initramfs you are booting. Only HTTP and HTTPS protocols are supported.

Advanced RHCOS installation reference

This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer command.

Networking options for ISO installations

If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot the image to configure networking for a node. If no networking arguments are specified, DHCP is activated in the initramfs when RHCOS detects that networking is required to fetch the Ignition config file.

When adding networking arguments manually, you must also add the rd.neednet=1 kernel argument to bring the network up in the initramfs.

The following information provides examples for configuring networking on your RHCOS nodes for ISO installations. The examples describe how to use the ip= and nameserver= kernel arguments.

Ordering is important when adding the kernel arguments: ip= and nameserver=.

The networking options are passed to the dracut tool during system boot. For more information about the networking options supported by dracut, see the dracut.cmdline manual page.

The following examples are the networking options for ISO installation.

Configuring DHCP or static IP addresses

To configure an IP address, either use DHCP (ip=dhcp) or set an individual static IP address (ip=<host_ip>). If setting a static IP, you must then identify the DNS server IP address (nameserver=<dns_ip>) on each node. The following example sets:

  • The node’s IP address to 10.10.10.2

  • The gateway address to 10.10.10.254

  • The netmask to 255.255.255.0

  • The hostname to core0.example.com

  • The DNS server address to 4.4.4.41

  • The auto-configuration value to none. No auto-configuration is required when IP networking is configured statically.

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41

When you use DHCP to configure IP addressing for the RHCOS machines, the machines also obtain the DNS server information through DHCP. For DHCP-based deployments, you can define the DNS server address that is used by the RHCOS nodes through your DHCP server configuration.

Configuring an IP address without a static hostname

You can configure an IP address without assigning a static hostname. If a static hostname is not set by the user, it will be picked up and automatically set by a reverse DNS lookup. To configure an IP address without a static hostname refer to the following example:

  • The node’s IP address to 10.10.10.2

  • The gateway address to 10.10.10.254

  • The netmask to 255.255.255.0

  • The DNS server address to 4.4.4.41

  • The auto-configuration value to none. No auto-configuration is required when IP networking is configured statically.

ip=10.10.10.2::10.10.10.254:255.255.255.0::enp1s0:none
nameserver=4.4.4.41
Specifying multiple network interfaces

You can specify multiple network interfaces by setting multiple ip= entries.

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Configuring default gateway and route

Optional: You can configure routes to additional networks by setting an rd.route= value.

When you configure one or multiple networks, one default gateway is required. If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway.

  • Run the following command to configure the default gateway:

    ip=::10.10.10.254::::
  • Enter the following command to configure the route for the additional network:

    rd.route=20.20.20.0/24:20.20.20.254:enp2s0
Disabling DHCP on a single interface

You can disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used. In the example, the enp1s0 interface has a static networking configuration and DHCP is disabled for enp2s0, which is not used:

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none
Combining DHCP and static IP configurations

You can combine DHCP and static IP configurations on systems with multiple network interfaces, for example:

ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Configuring VLANs on individual interfaces

Optional: You can configure VLANs on individual interfaces by using the vlan= parameter.

  • To configure a VLAN on a network interface and use a static IP address, run the following command:

    ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
    vlan=enp2s0.100:enp2s0
  • To configure a VLAN on a network interface and to use DHCP, run the following command:

    ip=enp2s0.100:dhcp
    vlan=enp2s0.100:enp2s0
Providing multiple DNS servers

You can provide multiple DNS servers by adding a nameserver= entry for each server, for example:

nameserver=1.1.1.1
nameserver=8.8.8.8

Waiting for the bootstrap process to complete

The OpenShift Container Platform bootstrap process begins after the cluster nodes first boot into the persistent RHCOS environment that has been installed to disk. The configuration information provided through the Ignition config files is used to initialize the bootstrap process and install OpenShift Container Platform on the machines. You must wait for the bootstrap process to complete.

Prerequisites
  • You have created the Ignition config files for your cluster.

  • You have configured suitable network, DNS and load balancing infrastructure.

  • You have obtained the installation program and generated the Ignition config files for your cluster.

  • You installed RHCOS on your cluster machines and provided the Ignition config files that the OpenShift Container Platform installation program generated.

Procedure
  1. Monitor the bootstrap process:

    $ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
    2 To view different installation details, specify warn, debug, or error instead of info.
    Example output
    INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
    INFO API v1.30.3 up
    INFO Waiting up to 30m0s for bootstrapping to complete...
    INFO It is now safe to remove the bootstrap resources

    The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.

  2. After the bootstrap process is complete, remove the bootstrap machine from the load balancer.

    You must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the bootstrap machine itself.

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites
  • You deployed an OpenShift Container Platform cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin

Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites
  • You added machines to your cluster.

Procedure
  1. Confirm that the cluster recognizes the machines:

    $ oc get nodes
    Example output
    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.30.3
    master-1  Ready     master  63m  v1.30.3
    master-2  Ready     master  64m  v1.30.3

    The output lists all of the machines that you created.

    The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

  2. Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:

    $ oc get csr
    Example output
    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...

    In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

  3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:

    Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.

    For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> (1)
      1 <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

      Some Operators might not become available until some CSRs are approved.

  4. Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:

    $ oc get csr
    Example output
    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...
  5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> (1)
      1 <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
  6. After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:

    $ oc get nodes
    Example output
    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.30.3
    master-1  Ready     master  73m  v1.30.3
    master-2  Ready     master  74m  v1.30.3
    worker-0  Ready     worker  11m  v1.30.3
    worker-1  Ready     worker  11m  v1.30.3

    It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.

Additional information

Initial Operator configuration

After the control plane initializes, you must immediately configure some Operators so that they all become available.

Prerequisites
  • Your control plane has initialized.

Procedure
  1. Watch the cluster components come online:

    $ watch -n5 oc get clusteroperators
    Example output
    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.17.0    True        False         False      19m
    baremetal                                  4.17.0    True        False         False      37m
    cloud-credential                           4.17.0    True        False         False      40m
    cluster-autoscaler                         4.17.0    True        False         False      37m
    config-operator                            4.17.0    True        False         False      38m
    console                                    4.17.0    True        False         False      26m
    csi-snapshot-controller                    4.17.0    True        False         False      37m
    dns                                        4.17.0    True        False         False      37m
    etcd                                       4.17.0    True        False         False      36m
    image-registry                             4.17.0    True        False         False      31m
    ingress                                    4.17.0    True        False         False      30m
    insights                                   4.17.0    True        False         False      31m
    kube-apiserver                             4.17.0    True        False         False      26m
    kube-controller-manager                    4.17.0    True        False         False      36m
    kube-scheduler                             4.17.0    True        False         False      36m
    kube-storage-version-migrator              4.17.0    True        False         False      37m
    machine-api                                4.17.0    True        False         False      29m
    machine-approver                           4.17.0    True        False         False      37m
    machine-config                             4.17.0    True        False         False      36m
    marketplace                                4.17.0    True        False         False      37m
    monitoring                                 4.17.0    True        False         False      29m
    network                                    4.17.0    True        False         False      38m
    node-tuning                                4.17.0    True        False         False      37m
    openshift-apiserver                        4.17.0    True        False         False      32m
    openshift-controller-manager               4.17.0    True        False         False      30m
    openshift-samples                          4.17.0    True        False         False      32m
    operator-lifecycle-manager                 4.17.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.17.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.17.0    True        False         False      32m
    service-ca                                 4.17.0    True        False         False      38m
    storage                                    4.17.0    True        False         False      37m
  2. Configure the Operators that are not available.

Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.

Procedure
  • Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:

    $ oc patch OperatorHub cluster --type json \
        -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Alternatively, you can use the web console to manage catalog sources. From the AdministrationCluster SettingsConfigurationOperatorHub page, click the Sources tab, where you can create, update, delete, disable, and enable individual sources.

Image registry storage configuration

The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.

Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.

Configuring registry storage for IBM Z

As a cluster administrator, following installation you must configure your registry to use storage.

Prerequisites
  • You have access to the cluster as a user with the cluster-admin role.

  • You have a cluster on IBM Z®.

  • You have provisioned persistent storage for your cluster, such as Red Hat OpenShift Data Foundation.

    OpenShift Container Platform supports ReadWriteOnce access for image registry storage when you have only one replica. ReadWriteOnce access also requires that the registry uses the Recreate rollout strategy. To deploy an image registry that supports high availability with two or more replicas, ReadWriteMany access is required.

  • Must have 100Gi capacity.

Procedure
  1. To configure your registry to use storage, change the spec.storage.pvc in the configs.imageregistry/cluster resource.

    When you use shared storage, review your security settings to prevent outside access.

  2. Verify that you do not have a registry pod:

    $ oc get pod -n openshift-image-registry -l docker-registry=default
    Example output
    No resources found in openshift-image-registry namespace

    If you do have a registry pod in your output, you do not need to continue with this procedure.

  3. Check the registry configuration:

    $ oc edit configs.imageregistry.operator.openshift.io
    Example output
    storage:
      pvc:
        claim:

    Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.

  4. Check the clusteroperator status:

    $ oc get clusteroperator image-registry
    Example output
    NAME             VERSION              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    image-registry   4.17                 True        False         False      6h50m
  5. Ensure that your registry is set to managed to enable building and pushing of images.

    • Run:

      $ oc edit configs.imageregistry/cluster

      Then, change the line

      managementState: Removed

      to

      managementState: Managed

Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure
  • To set the image registry storage to an empty directory:

    $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'

    Configure this option for only non-production clusters.

    If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:

    Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

    Wait a few minutes and run the command again.

Completing installation on user-provisioned infrastructure

After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.

Prerequisites
  • Your control plane has initialized.

  • You have completed the initial Operator configuration.

Procedure
  1. Confirm that all the cluster components are online with the following command:

    $ watch -n5 oc get clusteroperators
    Example output
    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.17.0    True        False         False      19m
    baremetal                                  4.17.0    True        False         False      37m
    cloud-credential                           4.17.0    True        False         False      40m
    cluster-autoscaler                         4.17.0    True        False         False      37m
    config-operator                            4.17.0    True        False         False      38m
    console                                    4.17.0    True        False         False      26m
    csi-snapshot-controller                    4.17.0    True        False         False      37m
    dns                                        4.17.0    True        False         False      37m
    etcd                                       4.17.0    True        False         False      36m
    image-registry                             4.17.0    True        False         False      31m
    ingress                                    4.17.0    True        False         False      30m
    insights                                   4.17.0    True        False         False      31m
    kube-apiserver                             4.17.0    True        False         False      26m
    kube-controller-manager                    4.17.0    True        False         False      36m
    kube-scheduler                             4.17.0    True        False         False      36m
    kube-storage-version-migrator              4.17.0    True        False         False      37m
    machine-api                                4.17.0    True        False         False      29m
    machine-approver                           4.17.0    True        False         False      37m
    machine-config                             4.17.0    True        False         False      36m
    marketplace                                4.17.0    True        False         False      37m
    monitoring                                 4.17.0    True        False         False      29m
    network                                    4.17.0    True        False         False      38m
    node-tuning                                4.17.0    True        False         False      37m
    openshift-apiserver                        4.17.0    True        False         False      32m
    openshift-controller-manager               4.17.0    True        False         False      30m
    openshift-samples                          4.17.0    True        False         False      32m
    operator-lifecycle-manager                 4.17.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.17.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.17.0    True        False         False      32m
    service-ca                                 4.17.0    True        False         False      38m
    storage                                    4.17.0    True        False         False      37m

    Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:

    $ ./openshift-install --dir <installation_directory> wait-for install-complete (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
    Example output
    INFO Waiting up to 30m0s for the cluster to initialize...

    The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.

    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

  2. Confirm that the Kubernetes API server is communicating with the pods.

    1. To view a list of all pods, use the following command:

      $ oc get pods --all-namespaces
      Example output
      NAMESPACE                         NAME                                            READY   STATUS      RESTARTS   AGE
      openshift-apiserver-operator      openshift-apiserver-operator-85cb746d55-zqhs8   1/1     Running     1          9m
      openshift-apiserver               apiserver-67b9g                                 1/1     Running     0          3m
      openshift-apiserver               apiserver-ljcmx                                 1/1     Running     0          1m
      openshift-apiserver               apiserver-z25h4                                 1/1     Running     0          2m
      openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8        1/1     Running     0          5m
      ...
    2. View the logs for a pod that is listed in the output of the previous command by using the following command:

      $ oc logs <pod_name> -n <namespace> (1)
      1 Specify the pod name and namespace, as shown in the output of the previous command.

      If the pod logs display, the Kubernetes API server can communicate with the cluster machines.

  3. For an installation with Fibre Channel Protocol (FCP), additional steps are required to enable multipathing. Do not enable multipathing during installation.

    See "Enabling multipathing with kernel arguments on RHCOS" in the Postinstallation machine configuration tasks documentation for more information.

  4. Register your cluster on the Cluster registration page.

Next steps